A Bayesian paradigm for designing intrusion detection systems

نویسنده

  • Steven L. Scott
چکیده

This article describes a model based approach to designing network intrusion detection systems. The article considers general methods applicable to many di%erent types of networks, using speci'c algorithms as examples. The central theme is that latent variable hierarchical models constructed using Bayesian methods lead to coherent systems that can handle the complex distributions involved with network tra)c. Bayes’ rule provides a means of combining competing intrusion detection methods such as anomaly detection and pattern recognition. Bayesian methods present evidence of intrusion as probabilities, which are easy for human fraud investigators to interpret. Hierarchical models allow transactions to communicate information about possible intrusions across time and accounts. These hierarchical models contain a transaction level model describing how well individual network transactions 't user and intruder pro'les, an account level model parameterizing bursts associated with network intrusion, and a network-level model that adjusts account level model parameters when an intrusion on one or more account is suspected. c © 2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Hybrid Data Mining based Intrusion Detection System for Wireless Local Area Networks

The exponential growth in wireless network faults, vulnerabilities, and attacks make the WLAN security management a challenging research area [29]. Data mining applied to intrusion detection is an active area of research. The main reason for using data mining techniques for intrusion detection systems is due to the enormous volume of existing and newly appearing network data that require proces...

متن کامل

Moving dispersion method for statistical anomaly detection in intrusion detection systems

A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2004